DAF-16 target genes that control C. elegans life-span and metabolism.

نویسندگان

  • Siu Sylvia Lee
  • Scott Kennedy
  • Andrew C Tolonen
  • Gary Ruvkun
چکیده

Signaling from the DAF-2/insulin receptor to the DAF-16/FOXO transcription factor controls longevity, metabolism, and development in disparate phyla. To identify genes that mediate the conserved biological outputs of daf-2/insulin-like signaling, we used comparative genomics to identify 17 orthologous genes from Caenorhabditis and Drosophila, each of which bears a DAF-16 binding site in the promoter region. One-third of these DAF-16 downstream candidate genes were regulated by daf-2/insulin-like signaling in C. elegans, and RNA interference inactivation of the candidates showed that many of these genes mediate distinct aspects of daf-16 function, including longevity, metabolism, and development.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The TOR pathway interacts with the insulin signaling pathway to regulate C. elegans larval development, metabolism and life span.

The highly conserved target-of-rapamycin (TOR) protein kinases control cell growth in response to nutrients and growth factors. In mammals, TOR has been shown to interact with raptor to relay nutrient signals to downstream translation machinery. We report that in C. elegans, mutations in the genes encoding CeTOR and raptor result in dauer-like larval arrest, implying that CeTOR regulates dauer ...

متن کامل

Longevity Genes Revealed by Integrative Analysis of Isoform-Specific daf-16/FoxO Mutants of Caenorhabditis elegans

FoxO transcription factors promote longevity across taxa. How they do so is poorly understood. In the nematode Caenorhabditis elegans, the A- and F-isoforms of the FoxO transcription factor DAF-16 extend life span in the context of reduced DAF-2 insulin-like growth factor receptor (IGFR) signaling. To elucidate the mechanistic basis for DAF-16/FoxO-dependent life span extension, we performed an...

متن کامل

Distinct activities of the germline and somatic reproductive tissues in the regulation of Caenorhabditis elegans' longevity.

The two parts of the Caenorhabditis elegans reproductive system, the germ cells and the somatic reproductive tissues, each influence the life span of the animal. Removing the germ cells increases longevity, and this life span extension requires the somatic gonad. Here we show that the somatic gonad and the germ cells make distinct contributions to life span determination. The life span increase...

متن کامل

C. elegans SIR-2.1 Interacts with 14-3-3 Proteins to Activate DAF-16 and Extend Life Span

The longevity of Caenorhabditis elegans is promoted by extra copies of the sir-2.1 gene in a manner dependent on the forkhead transcription factor DAF-16. We identify two C. elegans 14-3-3 proteins as SIR-2.1 binding partners and show that 14-3-3 genes are required for the life-span extension conferred by extra copies of sir-2.1. 14-3-3 proteins are also required for SIR-2.1-induced transcripti...

متن کامل

A developmental timing microRNA and its target regulate life span in C. elegans.

The microRNA lin-4 and its target, the putative transcription factor lin-14, control the timing of larval development in Caenorhabditis elegans. Here, we report that lin-4 and lin-14 also regulate life span in the adult. Reducing the activity of lin-4 shortened life span and accelerated tissue aging, whereas overexpressing lin-4 or reducing the activity of lin-14 extended life span. Lifespan ex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Science

دوره 300 5619  شماره 

صفحات  -

تاریخ انتشار 2003